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ABSTRACT
We use the Connectionist Normalized Local Spline (CNLS) network to learn the dynamics
of the Mackey-Glass time-delay differential equation, for the case r = 30. We show the
optimum nctwork operating mode and determine the accuracy and robustness of predictions.
We obtain predictions of vaxyir;g accuracy using some 2 - 120 minutes of execution time on
a Sun SPARC-1 workstation. CNLS-net 1s capable of very good performance in predicting
the Mackey-Glass time series.

Introduction

The Connectionist Normalized Local Spline (CNLS) network™! combines a number
of appealing features to yield a capable, versatile adaptive-computing network. The net
features normalized radial basis functions, a lineas gradient term, and simple, rapid solution
of the training algorithm, plus a variety of optional capabilities including Kalman Noise
Filtering."*? The CNLS network has been successfully applied to a number of fitting, pre-
diction, and control test exam?lcs. including a preliminary test of the net’s ability to predict
the Mackey-Glass equation.”?

The Mackey-Glass (M-G) equation’? is a time-delay ordinary differential equation that
displays well-understood chaotic behavior with dimensionality dependent upon the chosen
value of the delay parameter.”v* The time series generated by the M-G equation has been
used as a test bed for a number 0o new adaptive computing techniques: a local linear (or
quadratic) approximation method,”® a back-propegation neural netwoik,”v¢ and at least two
radial basis function approaches.”?”# In this work, we have performed extensive studies on
the use of the CNLS-net to model and predict the Mackey-Glass time series.

The CNLS-Network Arcnitecture

The Connectionist Nonlinear Local Spline Network (CNLS-net) was developed as an
extension of previous adaptive network experience."v87 %19 A natural evolution is 10 modily
radial basis function (RBF) nets in a manner that improves i'.terpolation and reduces the
amount of training necessary for accurate learning.”v'-'' CNLS-net architectu e has a single
hidden layer and starts from the identity

LN 9(F)p, (7
L) /’)(')

Here, as in the RBF network, p,(7) is a localized functicn of # about some #,. Hence, gt5)
on the night of Eq. 1 can be approximated by its Taylor expansion about #,. Wc have then,

f) = L F gy d) L) .
8lf) = NNl 4 (F - ) d)) e ()
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for an approximation to g(7). This net differs from the RBF net in two ways: (1) the use of
basis-function normalizaticn: and (2) the addition of a linear term, (¥ - £,) - d;. The use of a
normalization term was suggested but not pursued oy Moody and Darken.”v” The addition
of these two terms is responsible for the reduction in the amount of training data needed to
obtain reasonable approximations. As in the case with radial basis functions, the training
of f, and d, is linear and hence very fast.

The Mackey-Glass Equation

The Mackey-Glass (M-G) equation was first advanced as a model of white blood cell

production.”»® It is a time-delay differential equation, namely

dr _ az(t-r7)

dat " [T+ z(t = 1))
~here the constants are ofien (and in this work) taken to be ¢ = 0.2,6 = 0.1, and ¢ = 10.
The behavior of the M-G equation as a function of the delay parameter » has been studied
extensively and is reported by J. D. Farmer in Ref. ry4. At r = 30, the value used for
all of the studies reported here, the M-G equation’s attractor has an infornation dimension
of 3.6."v* Figure 1 shows a plot of the M-G equation with r = 30, slightly renormalized to
limit its range approximately to the interval (0,1). The standard deviation of the fuaction so
normalized i1s 0.24. In the results presented below, we use as a performance indicator, the
“Error Index,” defined as the root mean squared fitting or prediction error (RMSE) divided
by the standard deviation. With this definition of the Error Index, 2 constant fit through the
mean value of the function leads to a value of 1.0.

bx(t), (3)

Initial Choices for Embedding, Data sets, and Architecture

The starting place for this work was determined in large measure by the desire to
compare CNLS-net's performance with that of the back propagation net used by Lapedes.*
Thus, we initially chose the embedding used in previous works'*-7: the training and tes!
patterns were composed of 6 inputs, spaced ai ime intervals of 6 time units each, plus a
test output, the point 6 time units after the last entry of the input sequence. Later, we found
that embedding is a very sensitive matter, and performed more detailed studies of the issue.

The training and test files consisted of 1000 - 5000 points at fixed time spacing (usually,
At4ee= 1). The training and test files were non-overlapping time sequences, with the test
file usually continuing the series begun in the training file. Except where noted, we used
500 training patterns, and we always used 500 test patterns, as did Lapedes.”v® The training
patterns were selected at random and the test patterns sequentially. Also, the selected
training patterns were held fixed for the entire training period, but were usually “tumbled,”
i.e., presented in random, varying sequences for successive training epochs.

The CNLS-net architecture chosen initially used 6 input nodes, 28 hidden nodes (having
7 adjustable weights each), and one output node. This {liclds about 200 weights, fewer
than Lapedes’ reported bacl;g)ropagati'm net calculation: he used two hidden layers of 14
nodes each, giviag about 540 weights, total."v® Our initial architecture yielded a network
that could be trained in about 2 - 6 minutes and tested in about 1| minute (at 21 iterations
into the future), which made multiparameter optimization feasible.

Optimizing CNLS-Net's Parameters

We performed an extensive optimization of the adjustable parameters of CNLS-net:
the leaming rate, the width of the basis tunctions, and the discreet parameters governing
=mbedding and network size. We also devised two specific tests of versatility and robustness.

"NLS-net has two continuously-adjustable parameters. The learning rate shows a broad
optimum, and leaming behavior showed some regions of instability. We found a broad
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range of acceptable performance. Generally, higher learning rates led to faster training,
with increased sus- - »ability to instability. The width of the basis functions showed a broad
optimum, as well. The optimum width appears to be related to the characteristic structures
of the function being fit, under the chosen embedding.

The embedding structure is determined by the number of inputs to the network and
the time-separation between each input. Results of the two-dimensional embedding study
show that there is a lot of “‘structure.” Small changes in the embedding integers lead to
prediction errors that differ by a factor of 2x or more. This is an important issue that
needs to be understood better. We can s .mmarize the embedding results by noting that
most of the “successful” embeddings have At,,m, in the range of 30 - 45. We suspect this is
related to the choice of r = 30 as the Mackey-Glass delay parameter. The parameter r sets
a “coherence timescale,” and embeddings for which At,,., differs greatly from this time
interval are either supplying the network with too little or too much information.

An example of the M-G time series and CNLS-net’s fit is shown in Fig. 1. The plot
of Fig. 2 shows the net's training and prediction accuracy as a function of training epoch.
The net'’s prediction accuracy shows a broad optimum, but the net can be either over- of
under-trained. We also found that trainability and prediction accuracy were influenced by
the random initial choice of the basis function centers. Some of this sensitivity may be
exacerbated by marginal stability of the learning algorithm, while some of the variation is
due to the small numbers of basis functions used and the statistical effects of redistributing
them.

Best Results

Our best results are compared with Lapedes’ successful prediction in Fig. 3. The plot
sms three sets of CNLS-net predictions, made with hidden layer sizes of 28,56, and 112
nodes.

The Mackey-Glass, r = 30 calculation of Lapedes and Farber'v® was trained for about
60 minutes on a Cray XMP with vectorized coding. Our calculations were performed using
CNLSTOOL, written in the C language, and executed on a Sun SPARC-1 workstation. We
estimate, without detailed, specific code measurements, that a speed conversion factor of
about 40x is probably about right between the two computers. Thus, our longest run,
with predictive accuracy exceeding that of Lapedes’ back propagation network, and with
its training time of 2 hours, represents about a facter of 20x improvement in computing
resource requirement. Our faster runs, which of course are considerably less accurate in
lon§cr-timc predictions, showed an additional factor of 20 - 60x speedup, thus requiring
fairly modest computing rescurces.

Versatility and Robustness

General concepts of versatility and robustness for numerical algorithms exist. For the
purposes of this section, we qualitatively define “versatility” as the extent of the domain
over which the network achieves “niear-optimum" accuracy. Wc define “robustness’ as the
level of performance fluctugtions, e.g., fluctuations in prediction accuracy. We devised two
ways of testing the versatility and robnstness of the network: (1) changing ihe sampling
time interval in the training and test files and (2) changing the ume deiay parameter in the
Mackey-Glass equation. These tests can be made more or less sensitive by adjusting the
coniinuous parameter excursions to match tne versatility of the network being tested.

Here, we discuss the first test, varying the time spacing of data points in the training
and test files. This test provides a continuous handle on the matching of effective feature
size or “wavelength” of the function tr be fit and the network basis functions. Figure 4
shows the results for three different network sizes. For a fixed set of network parameters,
but retraining the net for each At,q., We find that variations of order 10% in point spacing
significantly affect the ability of the network to obtain predictive fits. Increasing the network
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size gradually improves the net’s versatility and robustness, both on this test and in our other,
related calculations.

Conclusions

CNLS-net has provern able to accurately predict the behavior of the Mackey-Glass
equation. We have obtained predictions that match the accuracy of previous work, v3:¢ while
requiring about 20x lnwer computational effort.”v® Data requirements are comparable with
those of a back propagation network™® and much less than those of unnormalized radial
basis function nets.”v? Overall, CNLS-net’s use of normalized, localized basis functions
with linearized correction terms appears to be a successful approach. Qualitatively, in this
low-dimensional space, CNLS-net behaves in ways that are roughly intermediate between
typical back propagation (BP) networks and rcdial basis function (RBF) nets. CNLS-net
leams much faster thain a BP net, out becomes more readi'y confused in cases of high
dimensionality or with excess data to analyze. CNLS-net requires less training data than
RBF nets. Accuracy generally improves with larger networks, larger training sei,, and
greater training times. Versatility and robustness of the net improve somewhat with network
size.
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Fig. 1. The Mackey-Glass time series (solid line) and the predictions (points) of CNLS-net

with 28 hidden s, for 500 test points. The net was trained for 40 epochs and tested at
21 iterations or At,, = 126.
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Fig. 2. Training and test error as a function of training epoch, for CNLS-riet with 15 hidden
nodes.
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Fig. 3. Prediction error vs. prediction time for three CNLS-nei configurations. Each CNLS-
net curve is labelled by the number of hidden nodes, the number of training sets, and the
number of training epochs. Curve labelled ““Lapedes” is from Ref. ry6.
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Fig. 4. Prediction error as the data files’ Atya, is varied chows versatility of CNLS-net.
Net parameters were held fixed and net was retrained for each value of Ategq-



